184 research outputs found

    Single Molecule Statistics and the Polynucleotide Unzipping Transition

    Full text link
    We present an extensive theoretical investigation of the mechanical unzipping of double-stranded DNA under the influence of an applied force. In the limit of long polymers, there is a thermodynamic unzipping transition at a critical force value of order 10 pN, with different critical behavior for homopolymers and for random heteropolymers. We extend results on the disorder-averaged behavior of DNA's with random sequences to the more experimentally accessible problem of unzipping a single DNA molecule. As the applied force approaches the critical value, the double-stranded DNA unravels in a series of discrete, sequence-dependent steps that allow it to reach successively deeper energy minima. Plots of extension versus force thus take the striking form of a series of plateaus separated by sharp jumps. Similar qualitative features should reappear in micromanipulation experiments on proteins and on folded RNA molecules. Despite their unusual form, the extension versus force curves for single molecules still reveal remnants of the disorder-averaged critical behavior. Above the transition, the dynamics of the unzipping fork is related to that of a particle diffusing in a random force field; anomalous, disorder-dominated behavior is expected until the applied force exceeds the critical value for unzipping by roughly 5 pN.Comment: 40 pages, 18 figure

    Entropic force of polymers on a cone tip

    Get PDF
    We consider polymers attached to the tip of a cone, and the resulting force due to entropy loss on approaching a plate (or another cone). At separations shorter than the polymer radius of gyration R_g, the only relevant length scale is the tip-plate (or tip-tip) separation h, and the entropic force is given by F=A kT/h. The universal amplitude A can be related to (geometry dependent) correlation exponents of long polymers. We compute A for phantom polymers, and for self-avoiding (including star) polymers by epsilon-expansion, as well as by numerical simulations in 3 dimensions

    Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

    Get PDF
    Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice

    Get PDF
    A genetic and pharmacological approach reveals novel insights into how changes in gut microbiota can subvert genetically predetermined phenotypes from lean to obese

    The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus

    Get PDF
    BACKGROUND: Diabetes mellitus (DM) leads to the development of diabetic cardiomyopathy, which is associated with altered nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signalling. Cardioprotective effects of elevated intracellular cGMP-levels have been described in different heart diseases. In the current study we aimed at investigating the effects of pharmacological activation of sGC in diabetic cardiomyopathy. METHODS: Type-1 DM was induced in rats by streptozotocin. Animals were treated either with the sGC activator cinaciguat (10 mg/kg/day) or with placebo orally for 8 weeks. Left ventricular (LV) pressure-volume (P-V) analysis was used to assess cardiac performance. Additionally, gene expression (qRT-PCR) and protein expression analysis (western blot) were performed. Cardiac structure, markers of fibrotic remodelling and DNA damage were examined by histology, immunohistochemistry and TUNEL assay, respectively. RESULTS: DM was associated with deteriorated cGMP signalling in the myocardium (elevated phosphodiesterase-5 expression, lower cGMP-level and impaired PKG activity). Cardiomyocyte hypertrophy, fibrotic remodelling and DNA fragmentation were present in DM that was associated with impaired LV contractility (preload recruitable stroke work (PRSW): 49.5 +/- 3.3 vs. 83.0 +/- 5.5 mmHg, P < 0.05) and diastolic function (time constant of LV pressure decay (Tau): 17.3 +/- 0.8 vs. 10.3 +/- 0.3 ms, P < 0.05). Cinaciguat treatment effectively prevented DM related molecular, histological alterations and significantly improved systolic (PRSW: 66.8 +/- 3.6 mmHg) and diastolic (Tau: 14.9 +/- 0.6 ms) function. CONCLUSIONS: Cinaciguat prevented structural, molecular alterations and improved cardiac performance of the diabetic heart. Pharmacological activation of sGC might represent a new therapy approach for diabetic cardiomyopathy

    Conformation-regulated mechanosensory control via titin domains in cardiac muscle

    Get PDF
    The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains

    Manipulating Protein Conformations By Single-molecule Afm-fret Nanoscopy

    Get PDF
    Combining atomic force microscopy and fluorescence resonance energy transfer spectroscopy (AFM-FRET), we have developed a single-molecule AFM-FRET nanoscopy approach capable of effectively pinpointing and mechanically manipulating a targeted dye-labeled single protein in a large sampling area and simultaneously monitoring the conformational changes of the targeted protein by recording single-molecule FRET time trajectories. We have further demonstrated an application of using this nanoscopy on manipulation of single-molecule protein conformation and simultaneous single-molecule FRET measurement of a Cy3-Cy5-labeled kinase enzyme, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase). By analyzing time-resolved FRET trajectories and correlated AFM force pulling curves of the targeted single-molecule enzyme, we are able to observe the protein conformational changes of a specific coordination by AFM mechanic force pulling

    Force spectroscopy in studying infection

    Get PDF
    Biophysical force spectroscopy tools - for example optical tweezers, magnetic tweezers, atomic force microscopy, - have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design

    Structure of Metaphase Chromosomes: A Role for Effects of Macromolecular Crowding

    Get PDF
    In metaphase chromosomes, chromatin is compacted to a concentration of several hundred mg/ml by mechanisms which remain elusive. Effects mediated by the ionic environment are considered most frequently because mono- and di-valent cations cause polynucleosome chains to form compact ∼30-nm diameter fibres in vitro, but this conformation is not detected in chromosomes in situ. A further unconsidered factor is predicted to influence the compaction of chromosomes, namely the forces which arise from crowding by macromolecules in the surrounding cytoplasm whose measured concentration is 100–200 mg/ml. To mimic these conditions, chromosomes were released from mitotic CHO cells in solutions containing an inert volume-occupying macromolecule (8 kDa polyethylene glycol, 10.5 kDa dextran, or 70 kDa Ficoll) in 100 µM K-Hepes buffer, with contaminating cations at only low micromolar concentrations. Optical and electron microscopy showed that these chromosomes conserved their characteristic structure and compaction, and their volume varied inversely with the concentration of a crowding macromolecule. They showed a canonical nucleosomal structure and contained the characteristic proteins topoisomerase IIα and the condensin subunit SMC2. These observations, together with evidence that the cytoplasm is crowded in vivo, suggest that macromolecular crowding effects should be considered a significant and perhaps major factor in compacting chromosomes. This model may explain why ∼30-nm fibres characteristic of cation-mediated compaction are not seen in chromosomes in situ. Considering that crowding by cytoplasmic macromolecules maintains the compaction of bacterial chromosomes and has been proposed to form the liquid crystalline chromosomes of dinoflagellates, a crowded environment may be an essential characteristic of all genomes
    corecore